Bio&ChemTeach (6-12)

Mini Medical School - Hematology

Author(s): Rustom Falahati, Megan Robblee, Bonnie Daley

Mini Medical School - Hematology

This is a two-class lesson plan. During the first class students are entered into a "mini-medical school" where they will learn about the functions and components of blood and make a candy model to reflect their relative proportions.  At the end of the class, they graduate medical school as hematologists. The next day they will be presented with a mock patient with a blood disorder. In groups, they will attempt to diagnose the patient using blood smears, results of lab tests, and patient histories.

View this entire lesson plan

Exploring chemical bonding

Author(s): SEP staff

Exploring chemical bonding

Students will engage in an exploration demonstrating the Octet rule and chemical bonding using paper models of elements forming covalent and ionic compounds.

View this entire lesson plan

Cleaning Water: A 5th Grade Standards-Based Science Unit

Author(s): (Coach) David Mann, (Team Members) Kevin Baldizon, Jeff Foote, Robin Schneider, Ben Wieman

Cleaning Water: A 5th Grade Standards-Based Science Unit

Many children around the world die due to drinking contaminated water.  This engaging science lesson will allow students learn how to build and use a simple homemade filter system to clean contaminated water. This 5th grade, standards-based lesson is great for California Science Content Standards Earth Sciences.  Students make observations, collect data and form hypothesis.  The end result is a gratifying surprise that they will enjoy while learning basic investigation and experimentation concepts.

View this entire lesson plan

Perception and the Brain

Author(s): Erin Currie, Eirene Markenscoff-Papadimitriou, SEP Staff

Perception and the Brain

In this lesson, students are introduced to how the brain interprets and uses sensory information from the visual system to guide how the body moves and performs various tasks. This lesson makes use of a specialized set of goggles with prism lenses that shift what the wearer sees. Using these prism goggles, students will see first hand how the brain adapts over time to changes in what we perceive. The lesson also makes a connection to the brain and brain function by giving students a chance to see and touch a preserved brain specimen.

View this entire lesson plan

What factors affect the oxidation of apples?

Author(s): John Rivera, Lillian Seu, Juliet Rose Girard, Anthony Shiver

What factors affect the oxidation of apples?

Students observe the browning of apples after cut and being exposed to air and brainstorm ideas about why this might be happening.
Students think about ways to slow down or prevent the browning effect and in teams create and conduct a simple experiment to test their ideas.

View this entire lesson plan

How does the pH environment affect bioavailability of Iron?

Author(s): John C. Rivera, Lillian Seu, Juliet Rose Girard, Anthony Shiver

How does the pH environment affect bioavailability of Iron?

Dietary minerals are available through ingestion of food and supplements.  In this lesson, students first examine the chemical reaction of two forms of iron, Fe0 and F+2 with various pH conditions of either the stomach or intestine to determine how it gets absorbed and eliminated in the body. Then students isolate iron from the foods we eat (such as cereal) using a magnet to attract elemental iron or Fe0.

View this entire lesson plan

Love in the Time of Cholera - Osmosis in action

Author(s): Amy Trusso, Brad Stohr, Stephen Floor, Greg Friedland

Love in the Time of Cholera - Osmosis in action

Students will first learn about the cause of cholera, and propose treatment options to save a hypothetical patient. They will then learn about the osmotic basis of the disease by using a simple dialysis tube/sucrose model for cholera diarrhea. Finally, they will discuss how osmosis can be harnessed to effectively treat the disease and how this treatment has saved millions of lives.

View this entire lesson plan

Slinky Lab- Simulating the Motion of Earthquake Waves.

Author(s):

Slinky Lab- Simulating the Motion of Earthquake Waves.

Students use a slinky to model earthquake waves. Learn the speed, direction and behavior of different waves which tell scientists about earthquakes.

View this entire lesson plan
Syndicate content